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Introduction to Probability and Combinatorics

O Sample space — The set of all possible outcomes of an experiment is known as the sample
space of the experiment and is denoted by S.

O Event — Any subset E of the sample space is known as an event. That is, an event is a set
consisting of possible outcomes of the experiment. If the outcome of the experiment is contained
in E, then we say that E has occurred.

0 Axioms of probability — For each event F, we denote P(E) as the probability of event E
occuring. By noting F1,...,E, mutually exclusive events, we have the 3 following axioms:
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O Permutation — A permutation is an arrangement of r objects from a pool of n objects, in a
given order. The number of such arrangements is given by P(n,r), defined as:

n!

P(n,r) = m

0 Combination — A combination is an arrangement of r objects from a pool of n objects, where
the order does not matter. The number of such arrangements is given by C(n,r), defined as:

P(n,r) n!

rl rl(n —r)!

C(n,r) =

Remark: we note that for 0 < r < n, we have P(n,r) > C(n,r).

Conditional Probability

0 Bayes’ rule — For events A and B such that P(B) > 0, we have:
P(B|A)P(A)
P(B)

P(A|B) =

Remark: we have P(AN B) = P(A)P(B|A) = P(A|B)P(B).

0O Partition — Let {A;,¢ € [1,n]} be such that for all i, A; # &. We say that {4;} is a partition
if we have:

n
Vi#j,AiNA;j=0 and UAZ-:S

=1

n
Remark: for any event B in the sample space, we have P(B) = Z P(BJA;)P(A;).
1=1

0 Extended form of Bayes’ rule — Let {4;,7 € [1,n]} be a partition of the sample space.
‘We have:

P(Ag|B) = f(BlAk)P(Ak)

> P(BIA)P(A)
i=1

O Independence — Two events A and B are independent if and only if we have:

\ P(ANB) = P(A)P(B)

Random Variables

0 Random variable — A random variable, often noted X, is a function that maps every element
in a sample space to a real line.

O Cumulative distribution function (CDF) — The cumulative distribution function F,
which is monotonically non-decreasing and is such that lim F(z) =0and lim F(z)=1,is

T——00 T—+o00
defined as:

F(z) = P(X < x)

Remark: we have P(a < X < B) = F(b) — F(a).

O Probability density function (PDF') — The probability density function f is the probability
that X takes on values between two adjacent realizations of the random variable.

O Relationships involving the PDF and CDF — Here are the important properties to know
in the discrete (D) and the continuous (C) cases.

Case CDF F PDF f Properties of PDF
(D) | F@)=Y P(X =) | fl@;)=P(X=2;) | 0<f(@;) <land Y fla;)=1
z;<T J
x ~+o00o
© | F@=[ sway M@= | f@zoand [ )=

0 Variance — The variance of a random variable, often noted Var(X) or o2

spread of its distribution function. It is determined as follows:

| Var(x) = E[(X — E[X])] = E[X?] - B[X)? |

, is a measure of the

0 Standard deviation — The standard deviation of a random variable, often noted o, is a
measure of the spread of its distribution function which is compatible with the units of the
actual random variable. It is determined as follows:

o =4/ Var(X)
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0 Expectation and Moments of the Distribution — Here are the expressions of the expected
value E[X], generalized expected value E[g(X)], k** moment F[X*] and characteristic function
1 (w) for the discrete and continuous cases:

Case E[X] Elg(X)] BIX"] P(w)
@) | D wf) | Y e@di@) | Y akr@) | Y S
i=1 =1 =1 i=1
+oco “+oo +oo ~+o0 .
(©) L zf(z)dz /7 g(z) f(z)dz /7 zF f(z)dx L f(z)e'“*dx
Remark: we have e'“% = cos(wz) + isin(wz).

O Revisiting the k" moment — The k" moment can also be computed with the characteristic

function as follows:
1 k
B k] _ [8 1/1}
w=0

ik | Qwk

0O Transformation of random variables — Let the variables X and Y be linked by some
function. By noting fx and fy the distribution function of X and Y respectively, we have:

dxr ‘
dy

O Leibniz integral rule — Let g be a function of z and potentially ¢, and a, b boundaries that
may depend on c. We have:

1o} b ob da b g
2 ( / g(w)dw) =G0 e =5 g+ [ e

fy(y) = fx ()

0 Marginal density and cumulative distribution — From the joint density probability
function fxy, we have:

Case Marginal density Cumulative function
(D) fx(z:) = Z Ixy (zi,y5) Fxy(z,y) = Z Z Ixy (zi,y5)
J ;ST Y; <Y
+o0 x Yy
© | sx@= [ rxvindy | Fxrea)= [ 7 peva)ia

O Distribution of a sum of independent random variables — Let Y = X + ... + X, with
X1, ..., X, independent. We have:

vy (@) = [[¥xi (@)

k=1

0 Covariance — We define the covariance of two random variables X and Y, that we note U%{y
or more commonly Cov(X,Y), as follows:

Cov(X,Y) £ 0%y = E[(X — px)(Y — py)] = E[XY] — pxpy

0 Correlation — By noting o x, oy the standard deviations of X and Y, we define the correlation
between the random variables X and Y, noted pxy, as follows:

Remarks: For any X,Y, we have pxy € [—1,1]. If X and Y are independent, then pxy = 0.

0 Main distributions — Here are the main distributions to have in mind:

Type | Distribution PDF Y (w) E[X] Var(X)
O Chebyshev’s inequality — Let X be a random variable with expected value p and standard N _ oy (™) & -z iw n
deviation o. For k,o > 0, we have the following inequality: X~ B(n.p) P(X =) )P (pe™ +q) np nPq
1 Binomial z € [0,n]
P(X = pl > ko) < (D)
X ~ Po(u) P(X=x)= 'u—'e_“ er(e™ 1) I n
. L. . Poisson r €N
Jointly Distributed Random Variables — - 2
1 iwb _ jiwa b b—
X ~uad) | fl)= e - ¢ a;r ( 12a)
O Conditional density — The conditional density of X with respect to Y, often noted fx|y, Uniform v € [a}] —-a (b—a)iw
is defined as follows: ’
fXY(:E7y) (C) X NN( U) f(x) _ 1 e—%(“”;u)z eiwu_%w2o‘2 o2
Ixy(z) = fi() H oo H
vy Gaussian z €R
e 1 1 1
0 Independence — Two random variables X and Y are said to be independent if we have: X ~ Exp(A) f(@) = Ae 1 _ iw by 2
. DY
Fxy @) = Fx @)fr () Exponential | « € Ry
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Parameter estimation

0 Random sample — A random sample is a collection of n random variables X1, ..., X,, that
are independent and identically distributed with X.

0 Estimator — An estimator § is a function of the data that is used to infer the value of an
unknown parameter 6 in a statistical model.

0 Bias — The bias of an estimator § is defined as being the difference between the expected
value of the distribution of 6 and the true value, i.e.:

Bias(d) = E[0] — 0

Remark: an estimator is said to be unbiased when we have E [é} =6.

0 Sample mean and variance — The sample mean and the sample variance of a random
sample are used to estimate the true mean g and the true variance o2 of a distribution, are
noted X and s? respectively, and are such that:

n n
— 1 1 —
X=- E X;| and |s?=62= E (XifX)Z
n n—1
i=1 i=1
O Central Limit Theorem — Let us have a random sample Xj,..., X,, following a given

distribution with mean p and variance o2, then we have:

— o
XN (“’ %)
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