VIP Cheatsheet: Supervised Learning

Afshine AMIDI and Shervine AMIDI

September 9, 2018

Introduction to Supervised Learning

Given a set of data points $\{x^{(1)}, ..., x^{(m)}\}$ associated to a set of outcomes $\{y^{(1)}, ..., y^{(m)}\}$, we want to build a classifier that learns how to predict y from x.

 \square Type of prediction – The different types of predictive models are summed up in the table below:

	Regression	Classifier	
Outcome	Continuous	Class	
Examples	Examples Linear regression Logistic regression, SVM, Naive Ba		

 \square Type of model – The different models are summed up in the table below:

	Discriminative model	Generative model	
GoalDirectly estimate $P(y x)$		Estimate $P(x y)$ to deduce $P(y x)$	
What's learned Decision boundary		Probability distributions of the data	
Illustration			
Examples	Regressions, SVMs	GDA, Naive Bayes	

Notations and general concepts

D Hypothesis – The hypothesis is noted h_{θ} and is the model that we choose. For a given input data $x^{(i)}$, the model prediction output is $h_{\theta}(x^{(i)})$.

DLoss function – A loss function is a function $L : (z,y) \in \mathbb{R} \times Y \mapsto L(z,y) \in \mathbb{R}$ that takes as inputs the predicted value z corresponding to the real data value y and outputs how different they are. The common loss functions are summed up in the table below:

Least squared Logistic		Hinge	Cross-entropy	
$\frac{1}{2}(y-z)^2$	$\log(1 + \exp(-yz))$	$\max(0,1-yz)$	$-\left[y\log(z) + (1-y)\log(1-z)\right]$	
$y \in \mathbb{R}$	z y = -1 y = 1	y = -1	y=0 1 0 $y=1$	
Linear regression	Logistic regression	SVM	Neural Network	

Cost function – The cost function J is commonly used to assess the performance of a model, and is defined with the loss function L as follows:

$$J(\theta) = \sum_{i=1}^{m} L(h_{\theta}(x^{(i)}), y^{(i)})$$

Gradient descent – By noting $\alpha \in \mathbb{R}$ the learning rate, the update rule for gradient descent is expressed with the learning rate and the cost function J as follows:

Remark: Stochastic gradient descent (SGD) is updating the parameter based on each training example, and batch gradient descent is on a batch of training examples.

D Likelihood – The likelihood of a model $L(\theta)$ given parameters θ is used to find the optimal parameters θ through maximizing the likelihood. In practice, we use the log-likelihood $\ell(\theta) = \log(L(\theta))$ which is easier to optimize. We have:

 $\theta^{\mathrm{opt}} = \arg \max_{\theta} \, L(\theta)$

Dewton's algorithm – The Newton's algorithm is a numerical method that finds θ such that $\ell'(\theta) = 0$. Its update rule is as follows:

$$\theta \leftarrow \theta - \frac{\ell'(\theta)}{\ell''(\theta)}$$

 $Remark:\ the\ multidimensional\ generalization,\ also\ known\ as\ the\ Newton-Raphson\ method,\ has\ the\ following\ update\ rule:$

$$\theta \leftarrow \theta - \left(\nabla_{\theta}^{2} \ell(\theta)\right)^{-1} \nabla_{\theta} \ell(\theta)$$

Linear regression

We assume here that $y|x; \theta \sim \mathcal{N}(\mu, \sigma^2)$

 \Box Normal equations – By noting X the matrix design, the value of θ that minimizes the cost function is a closed-form solution such that:

 $\theta = (X^T X)^{-1} X^T y$

 \Box LMS algorithm – By noting α the learning rate, the update rule of the Least Mean Squares (LMS) algorithm for a training set of m data points, which is also known as the Widrow-Hoff learning rule, is as follows:

$$\forall j, \quad \theta_j \leftarrow \theta_j + \alpha \sum_{i=1}^m \left[y^{(i)} - h_\theta(x^{(i)}) \right] x_j^{(i)}$$

Remark: the update rule is a particular case of the gradient ascent.

D LWR – Locally Weighted Regression, also known as LWR, is a variant of linear regression that weights each training example in its cost function by $w^{(i)}(x)$, which is defined with parameter $\tau \in \mathbb{R}$ as:

$$w^{(i)}(x) = \exp\left(-\frac{(x^{(i)} - x)^2}{2\tau^2}\right)$$

Classification and logistic regression

 \square Sigmoid function – The sigmoid function g, also known as the logistic function, is defined as follows:

$$\forall z \in \mathbb{R}, \quad g(z) = \frac{1}{1 + e^{-z}} \in]0,1[$$

D Logistic regression – We assume here that $y|x; \theta \sim \text{Bernoulli}(\phi)$. We have the following form:

$$\phi = p(y = 1|x; \theta) = \frac{1}{1 + \exp(-\theta^T x)} = g(\theta^T x)$$

Remark: there is no closed form solution for the case of logistic regressions.

□ Softmax regression – A softmax regression, also called a multiclass logistic regression, is used to generalize logistic regression when there are more than 2 outcome classes. By convention, we set $\theta_K = 0$, which makes the Bernoulli parameter ϕ_i of each class *i* equal to:

$$\phi_i = \frac{\exp(\theta_i^T x)}{\displaystyle\sum_{j=1}^{K} \exp(\theta_j^T x)}$$

Generalized Linear Models

D Exponential family – A class of distributions is said to be in the exponential family if it can be written in terms of a natural parameter, also called the canonical parameter or link function, η , a sufficient statistic T(y) and a log-partition function $a(\eta)$ as follows:

$$p(y;\eta) = b(y) \exp(\eta T(y) - a(\eta))$$

Remark: we will often have T(y) = y. Also, $\exp(-a(\eta))$ can be seen as a normalization parameter that will make sure that the probabilities sum to one.

Here are the most common exponential distributions summed up in the following table:

Distribution	η	T(y)	$a(\eta)$	b(y)
Bernoulli	$\log\left(\frac{\phi}{1-\phi}\right)$	y	$\log(1 + \exp(\eta))$	1
Gaussian	μ	y	$\frac{\eta^2}{2}$	$\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{y^2}{2}\right)$
Poisson	$\log(\lambda)$	y	e^{η}	$\frac{1}{y!}$
Geometric	$\log(1-\phi)$	y	$\log\left(\frac{e^{\eta}}{1-e^{\eta}}\right)$	1

C Assumptions of GLMs – Generalized Linear Models (GLM) aim at predicting a random variable y as a function fo $x \in \mathbb{R}^{n+1}$ and rely on the following 3 assumptions:

(1)
$$y|x; \theta \sim \text{ExpFamily}(\eta)$$
 (2) $h_{\theta}(x) = E[y|x; \theta]$ (3) $\eta = \theta^T x$

 ${\it Remark: \ ordinary \ least \ squares \ and \ logistic \ regression \ are \ special \ cases \ of \ generalized \ linear models.}$

Support Vector Machines

The goal of support vector machines is to find the line that maximizes the minimum distance to the line.

 \Box Optimal margin classifier – The optimal margin classifier h is such that:

$$h(x) = \operatorname{sign}(w^T x - b)$$

where $(w, b) \in \mathbb{R}^n \times \mathbb{R}$ is the solution of the following optimization problem:

$$\boxed{\min \frac{1}{2} ||w||^2} \quad \text{such that} \quad \boxed{y^{(i)}(w^T x^{(i)} - b) \ge 1}$$

 \square Hinge loss – The hinge loss is used in the setting of SVMs and is defined as follows: $\boxed{L(z,y)=[1-yz]_+=\max(0,1-yz)}$

 \Box Kernel – Given a feature mapping ϕ , we define the kernel K to be defined as:

$$K(x,z) = \phi(x)^T \phi(z)$$

In practice, the kernel K defined by $K(x,z) = \exp\left(-\frac{||x-z||^2}{2\sigma^2}\right)$ is called the Gaussian kernel and is commonly used.

Non-linear separability \implies Use of a kernel mapping ϕ \implies Decision boundary in the original space

Remark: we say that we use the "kernel trick" to compute the cost function using the kernel because we actually don't need to know the explicit mapping ϕ , which is often very complicated. Instead, only the values K(x,z) are needed.

Lagrangian – We define the Lagrangian $\mathcal{L}(w,b)$ as follows:

$$\mathcal{L}(w,b) = f(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

Remark: the coefficients β_i are called the Lagrange multipliers.

Generative Learning

A generative model first tries to learn how the data is generated by estimating P(x|y), which we can then use to estimate P(y|x) by using Bayes' rule.

Gaussian Discriminant Analysis

 \square Setting – The Gaussian Discriminant Analysis assumes that y and x|y=0 and x|y=1 are such that:

 \square Estimation – The following table sums up the estimates that we find when maximizing the likelihood:

$$\begin{tabular}{|c|c|c|c|c|} \hline & \widehat{\phi} & & \widehat{\mu_j} & (j=0,1) & & \widehat{\Sigma} \\ \hline & \frac{1}{m} \sum_{i=1}^m \mathbf{1}_{\{y^{(i)}=1\}} & & \frac{\sum_{i=1}^m \mathbf{1}_{\{y^{(i)}=j\}} x^{(i)}}{\sum_{i=1}^m \mathbf{1}_{\{y^{(i)}=j\}}} & & \frac{1}{m} \sum_{i=1}^m (x^{(i)}-\mu_{y^{(i)}}) (x^{(i)}-\mu_{y^{(i)}})^T \\ \hline & \end{array}$$

Naive Bayes

 \square Assumption – The Naive Bayes model supposes that the features of each data point are all independent:

$$P(x|y) = P(x_1, x_2, \dots | y) = P(x_1|y)P(x_2|y)\dots = \prod_{i=1}^n P(x_i|y)$$

 \square Solutions – Maximizing the log-likelihood gives the following solutions, with $k \in \{0,1\}, l \in [\![1,L]\!]$

$$P(y=k) = \frac{1}{m} \times \#\{j|y^{(j)} = k\} \quad \text{and} \quad P(x_i = l|y = k) = \frac{\#\{j|y^{(j)} = k \text{ and } x_i^{(j)} = l\}}{\#\{j|y^{(j)} = k\}}$$

Remark: Naive Bayes is widely used for text classification and spam detection.

Tree-based and ensemble methods

These methods can be used for both regression and classification problems.

 \Box CART – Classification and Regression Trees (CART), commonly known as decision trees, can be represented as binary trees. They have the advantage to be very interpretable.

 \square Random forest – It is a tree-based technique that uses a high number of decision trees built out of randomly selected sets of features. Contrary to the simple decision tree, it is highly uninterpretable but its generally good performance makes it a popular algorithm.

Remark: random forests are a type of ensemble methods.

 \square **Boosting** – The idea of boosting methods is to combine several weak learners to form a stronger one. The main ones are summed up in the table below:

https://	/stanford.edu/	~shervine
----------	----------------	-----------

Adaptive boosting	Gradient boosting	
High weights are put on errors to	- Weak learners trained	
improve at the next boosting step Known as Adaboost	on remaining errors	

Other non-parametric approaches

 \Box k-nearest neighbors – The k-nearest neighbors algorithm, commonly known as k-NN, is a non-parametric approach where the response of a data point is determined by the nature of its k neighbors from the training set. It can be used in both classification and regression settings.

Remark: The higher the parameter k, the higher the bias, and the lower the parameter k, the higher the variance.

Learning Theory

D Union bound – Let $A_1, ..., A_k$ be k events. We have:

D Hoeffding inequality – Let $Z_1, ..., Z_m$ be *m* iid variables drawn from a Bernoulli distribution of parameter ϕ . Let $\hat{\phi}$ be their sample mean and $\gamma > 0$ fixed. We have:

$P(\phi - \widehat{\phi} > \gamma) \leqslant 2\exp(-2\gamma^2 m)$

Remark: this inequality is also known as the Chernoff bound.

 \Box Training error – For a given classifier h, we define the training error $\hat{\epsilon}(h)$, also known as the empirical risk or empirical error, to be as follows:

$$\widehat{\epsilon}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{\{h(x^{(i)}) \neq y^{(i)}\}}$$

 \Box **Probably Approximately Correct (PAC)** – PAC is a framework under which numerous results on learning theory were proved, and has the following set of assumptions:

- the training and testing sets follow the same distribution
- the training examples are drawn independently

□ Shattering – Given a set $S = \{x^{(1)}, ..., x^{(d)}\}$, and a set of classifiers \mathcal{H} , we say that \mathcal{H} shatters S if for any set of labels $\{y^{(1)}, ..., y^{(d)}\}$, we have:

$$\exists h \in \mathcal{H}, \quad \forall i \in \llbracket 1, d \rrbracket, \quad h(x^{(i)}) = y^{(i)}$$

Dpper bound theorem – Let \mathcal{H} be a finite hypothesis class such that $|\mathcal{H}| = k$ and let δ and the sample size *m* be fixed. Then, with probability of at least $1 - \delta$, we have:

	$\epsilon(\widehat{h}) \leqslant \left(\min_{h \in \mathcal{H}} \epsilon(h)\right) + 2\sqrt{2}$	$\sqrt{\frac{1}{2m}\log}$	$\left(\frac{2k}{\delta}\right)$
--	---	---------------------------	----------------------------------

 \Box VC dimension – The Vapnik-Chervonenkis (VC) dimension of a given infinite hypothesis class \mathcal{H} , noted VC(\mathcal{H}) is the size of the largest set that is shattered by \mathcal{H} .

Remark: the VC dimension of $\mathcal{H} = \{set \ of \ linear \ classifiers \ in \ 2 \ dimensions\}$ is 3.

D Theorem (Vapnik) – Let \mathcal{H} be given, with $VC(\mathcal{H}) = d$ and m the number of training examples. With probability at least $1 - \delta$, we have:

$$\epsilon(\widehat{h}) \leqslant \left(\min_{h \in \mathcal{H}} \epsilon(h)\right) + O\left(\sqrt{\frac{d}{m} \log\left(\frac{m}{d}\right) + \frac{1}{m} \log\left(\frac{1}{\delta}\right)}\right)$$